Substrate-selective Photo-oxidation of Benzyl Alcohol Derivatives with Oxygen, catalysed by an NAD+ Model Compound

Shunichi Fukuzumi", Sadaki Kuroda, and Toshio Tanaka"

Department **of** *Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan*

An NAD+ model compound, 10-methylacridinium ion (AcrH+), catalyses the substrate-selective photo-oxidation of benzyl alcohol derivatives with oxygen in acetonitrile at 298 K, which is initiated by the electron-transfer reactions from benzyl alcohol derivatives to the singlet excited state of AcrH+.

There have been extensive efforts to understand electron and proton flow in the reduction of various carbonyl compounds to alcohols by model compounds of reduced nicotinamide adenine dinucleotide $(NADH)$, $1-3$ an important coenzyme in biological redox reactions. However, little is known of the back reaction, *i.e.,* the conversion of alcohols into aldehydes by NAD+ model compounds, which hitherto required base catalysis,4 unusual NAD+ model compounds being highly electron deficient,⁵ or strongly electron-donating alcohols.⁶ We report herein the efficient and selective conversion of benzyl alcohol derivatives into the corresponding aldehydes with oxygen under visible light irradiation $(\lambda > 390 \text{ nm})$, catalysed by 10-methylacridinium ion (AcrH+) which has frequently been used as a simple NAD+ model compound.³

Irradiation of an oxygen-saturated [2H3]acetonitrile solution containing AcrH+ and benzyl alcohol or p-chlorobenzyl alcohol with visible light $(\lambda > 390 \text{ nm})$ resulted in the quantitative conversion $(100 \pm 3\%)$ of the alcohols into aldehydes as shown in Figure 1. Without AcrH+, the photochemical reaction did not proceed under otherwise identical conditions, and the AcrH+ concentration remained constant during the photo-oxidation of alcohols in the

presence of Acr H^+ (Figure 1). Thus, Acr H^+ acts as an efficient photocatalyst in the photo-oxidation of benzyl alcohol derivatives $(X - C_6H_4CH_2OH)$ with oxygen [equation (l)]. The formation of hydrogen peroxide was confirmed by titration with iodide ion as described elsewhere.7

$$
X-C_6H_4CH_2OH + O_2 \xrightarrow{\hbar v} X-C_6H_4CHO + H_2O_2
$$
 (1)

In the absence **of** oxygen, AcrH+ was reduced by benzyl alcohol under visible light irradiation to yield protonated 10-methylacridan $(AcrH₃+)$ and benzaldehyde. However, once Acr H^+ is fully reduced to Acr H_3^+ , the rate of oxidation of $AcrH₃$ ⁺ by oxygen to regenerate $AcrH⁺$ is very slow, compared with the efficient photocatalytic oxidation of benzyl alcohol with oxygen, catalysed by AcrH+ (Figure 1). Thus, the reaction pathway for the AcrH+ catalysed photo-oxidation may be different from that reported for the photo-oxidation of p-methylbenzyl alcohol with oxygen, catalysed by **a** flavin-Mg2+ complex, where a fully reduced flavin is readily oxidized by oxygen to regenerate an oxidized flavin.7

The quantum yields, *0,* of the photo-oxidation of various benzyl alcohol derivatives $(X - C_6H_4CH_2OH)$ with oxygen,

Figure 1. Photo-oxidation of PhCH₂OH (O) or p -ClC₆H₄CH₂OH (\triangle) with oxygen, catalysed by AcrH⁺ (\square) under visible light irradiation $(\lambda > 390 \text{ nm})$, monitored by ¹H n.m.r. spectroscopy in CD3CN at 298 K; PhCHO **(a),** p-ClC6H4CHO **(A).**

Table 1. Quantum yields Φ of photocatalytic oxidation of benzyl alcohol derivatives $X - C_6H_4CH_2OH$ (5.0 \times 10⁻² mol dm⁻³) with oxygen, catalysed by AcrH+, and rate constants of photoinduced electron-transfer reactions from X-C₆H₄CH₂OH to ¹AcrH^{+*} in MeCN at 298 K.

X – $C_6H_4CH_2OH$			
x	Фа	log(k _{et}) ^{b,c}	$log(k_q)^{b,d}$
p-HO	0	e	10.0
p -MeO	0	e	10.2
p -Pri	0.17	9.9	10.0
p -Me	0.09	9.9	10.1
p -Cl	0.14	8.0	8.3
н	0.07	7.6	7.8
p -NC	0	e	e
p -O ₂ N	0	e	e

a Determined from the initial rate of formation of $X - C_6H_4CHO$ by using a ferrioxalate actiometer. $\frac{b}{b}$ Units of *k*, dm³ mol⁻¹ s⁻¹. \circ Determined from plots of Φ^{-1} *vs.* $[X-C_6H_4CH_2OH]^{-1}$ using equation (2). ^d Determined from the fluorescence quenching of ¹AcrH^{+*} by X-C₆H₄CH₂OH. \degree Too small to be determined accurately.

catalysed by AcrH+ in MeCN at 298 K, were determined under conditions such that both a ferrioxalate actinometer $(0.15 \text{ mol dm}^{-3})$ and AcrH+ absorb essentially all the incident light (>95%) from a Xenon lamp through a Toshiba UV-D36B filter transmitting light of $300 < \lambda < 420$ nm. The Φ values at a constant X-C₆H₄CH₂OH concentration (5.0 \times 10^{-2} mol dm⁻³) are listed in Table 1. The maximum Φ value is achieved when $X = p\text{-}Pr^i$, whereas no photo-oxidation of $X-C₆H₄CH₂OH$ was observed with strongly electron-donating $(X = p$ -HO or p -MeO) or -withdrawing $(X = p$ -NC or $p-O₂N$) substituents (Table 1).

Such substrate-selective photocatalytic oxidation of $X-C₆H₄CH₂OH$ may be explained by Scheme 1, where the electron-transfer reaction from $X-C_6H_4CH_2OH$ to the singlet excited state of AcrH+ produces $X-C_6H_4CH_2OH$ ⁺⁺ and

Scheme 1

Acr $H\cdot$; the latter, a half-reduced radical Acr $H\cdot$, is efficiently quenched by oxygen to give $AcrHO₂$, and subsequent proton-transfer from $X - C_6H_4CH_2OH$ ⁺⁺ to AcrHO₂· occurs, followed by electron- and proton-transfer in the cage to yield $X-C_6H_4CHO$ and H_2O_2 , regenerating AcrH⁺. The strongly electron-withdrawing substituents on benzyl alcohol disfavour the electron-transfer process from $X - C_6H_4CH_2OH$ to ¹AcrH^{+*}. In contrast, strongly electron-donating substituents favour the electron-transfer process, but disfavour the protontransfer process from $X-C_6H_4CH_2OH$ ⁺⁺ to AcrHO₂⁺, since it is known that an increase in the electron-donor ability of substituents leads *to* a decrease in the proton-donor ability of the oxidized species.8 Thus, in order to achieve efficient photocatalytic oxidation, both the electron- and proton-transfer processes should be fast enough to compete with the decay of lAcrH+* and the back electron-transfer reaction from Acr HO_2 · to $X-C_6H_4CH_2OH$ ^{*+}, respectively (Scheme 1); thus a sensitive balance between the electron- and proton-transfer processes to control the electron- and proton-donor abilities of $X-C_6H_4CH_2OH$ and $X-C_6H_4CH_2OH^{++}$, respectively, is required by choosing appropriate substituents X.

According to Scheme 1, the quantum yield Φ is given by equation (2), where $C = (k'_{b} + k_{H})(k_{b} + k_{a}[O_{2}])/k_{H}k_{a}[O_{2}].$ Plots of Φ^{-1} *vs.* $[X-C_6H_4CH_2OH]^{-1}$ gave straight lines and from the slopes and intercepts the rate constants k_{et} of electron-transfer reactions from $X-C_6H_4CH_2OH$ to the excited state of AcrH+ were determined using the lifetime of 1 AcrH^{+*} (τ 31 ns⁹). The fluorescence of AcrH⁺ is known to be quenched by electron-transfer reactions with organic and inorganic electron-donors.⁹ The quenching rate constants k_q of ${}^{1}\text{Acr}H^{+*}$ with X-C₆H₄CH₂OH were determined from the slopes of the Stern-Volmer plots and the fluorescence lifetime $(\tau 31 \text{ ns}^9)$. Both the k_{et} and k_q values for various benzyl alcohol derivatives, thus determined, are also listed in Table 1, where the k_{et} values obtained from the dependence of Φ on the $X-C₆H₄CH₂OH$ concentration [equation (2)] based on

$$
\Phi^{-1} = C[1 + (k_{\rm et} \tau [X - C_6 H_4 CH_2 OH])^{-1}] \tag{2}
$$

Scheme 1 agree well with the k_q values obtained directly from the electron-transfer quenching of the singlet excited state ¹AcrH^{+*} by X-C₆H₄CH₂OH. Such agreement is strong evidence that the photocatalytic oxidation of $X-C_6H_4CH_2OH$ is initiated by the photoinduced electron-transfer from $X-C_6H_4CH_2OH$ to ${}^{1}\text{Ar}H^{+*}$ (Scheme 1).

Received, 14th August 1986; Corn. 11 70

References

- **1** U. Eisner and J. Kuthan, *Chem. Rev.,* **1972,72,1;** D. M. Stout and A. **I.** Meyers, *ibid.,* **1982, 82, 223,** and references therein.
- **2** B. W. Carlson and L. L. Miller, *J. Am. Chem. SOC.,* **1985,107,479;** M. F. Powell, and T. C. Bruice, *ibid.,* **1983, 105, 7139; S.** Fukuzumi, N. Nishizawa, and T. Tanaka, *J. Org. Chem.,* **1984,49, 3571;** *J. Chem.* **SOC.,** *Perkin Trans. 2,* **1985, 371.**
- **3** A. Ohno, T. Shio, H. Yamarnoto, and **S.** Oka, *J. Am. Chem. SOC.,* **1981, 103,2045;** M. M. Kreevoy and **I.-S.** H. Lee, *ibid.,* **1984, 106,** *2550;* A. K. Colter, G. Saito, **F.** J. Sharom, and **A.** P. Hong, *ibid.,* **1976, 98, 7833; S.** Fukuzumi, M. Ishikawa, and T. Tanaka,
- *J. Chem. SOC., Chem. Commun.,* **1985, 1069;** *Tetrahedron,* **1986, 42, 1021.**
- **4 S.** Shinkai, H. Era, T. Tsuno, and 0. Manabe, *Bull. Chem. SOC. Jpn.,* **1984,57,1435;** A. Ohno, **S.** Ushida, and **S.** Oka, *Tetrahedron Lett.,* **1982, 23, 2784.**
- *5* K. Wallenfels and W. Hanstein, *Angew. Chem., Int. Ed. Engl.,* **1965,4, 867;** F. Yoneda, **H.** Yamato, and M. Ono, *J. Am. Chem. SOC.,* **1981, 103, 5943.**
- **6 S.** Shinkai, T. Tsuno, and *0.* Manabe, J. *Chem. SOC., Perkin Trans. 2,* **1984, 661.**
- **7 S.** Fukuzumi, K. Kuroda, and T. Tanaka, *J. Am. Chem. SOC.,* **1985, 107, 3020.**
- **8** C. J. Schlesener, C. Amatore, and J. K. Kochi, *J. Am. Chem. SOC.,* **1984,106,7472;** A. Martin, P. Nicholas, and D. R. Arnold, *Can. J. Chem.,* **1982, 60, 2165.**
- **9 H.** Gebert, W. Regenstein, J. Bending, and D. Kreysig, *2. Phys. Chem., Leipzig.,* **1982,263,65; A.** T. Poulos, G. **S.** Hammond, and M. E. Burton, *Photochem. Photobiol.,* **1981, 34, 169.**